We've already seen that E(s) admits analytic continuation to Re(s) > 0. Today we prove meromorphic continuation to see and functional equation. Theorem: The function S(s) admits meromorphic continuation to the entire complex plane and verifies the functional equation 夏(5):= 17-5/2 ア(至)タ(5)= 17-2 ア(1-5) タ(1-5)= 夏(-5) The only pole of g(s) is at s=1, it is simple withe residue residue residue 1. Motivation for proof: We note that for Re(s) > 1, ue have $\frac{3}{3}(s) = \pi^{-s/2} r(\frac{s}{2}) 2(s) = \frac{2}{n \ge 1} (\pi n^2)^{-s/2} r(\frac{s}{2})$ $= \sum_{n\geq 1} (Tn^2)^{-S/2} \mathcal{M}(\ell^{-3})(\frac{S}{2})$ $= \sum_{n\geq 1} \mathcal{M}(e^{-iny})(\frac{5}{2})$

$$= \mathcal{M}\left(\sum_{n\geq 1} e^{-\pi n^2 y}\right) \left(\frac{S}{2}\right).$$

$$= \mathcal{M}\left(\omega(y)\right) \left(\frac{S}{2}\right).$$

$$\text{lefine } \theta\left(0,\infty\right) \to \mathbb{R} \text{ given by }$$

$$\theta(x) := \sum_{n\geq 2} e^{-\pi n^2 x}.$$

$$\text{It converges absolutely for } x>0:$$

$$|\phi(x)| \leq 1 + \int e^{-\pi y^2 x} dy \leq 1 + \int \frac{1}{\sqrt{x}}.$$

$$\text{Also, for } x \geq 1:$$

$$\sum_{n\geq 2} e^{-\pi n^2 x} = e^{-\pi x} \sum_{n\geq 2} e^{-\pi (n^2 - 1)} \leq e^{-\pi (n^2 - 1)}$$

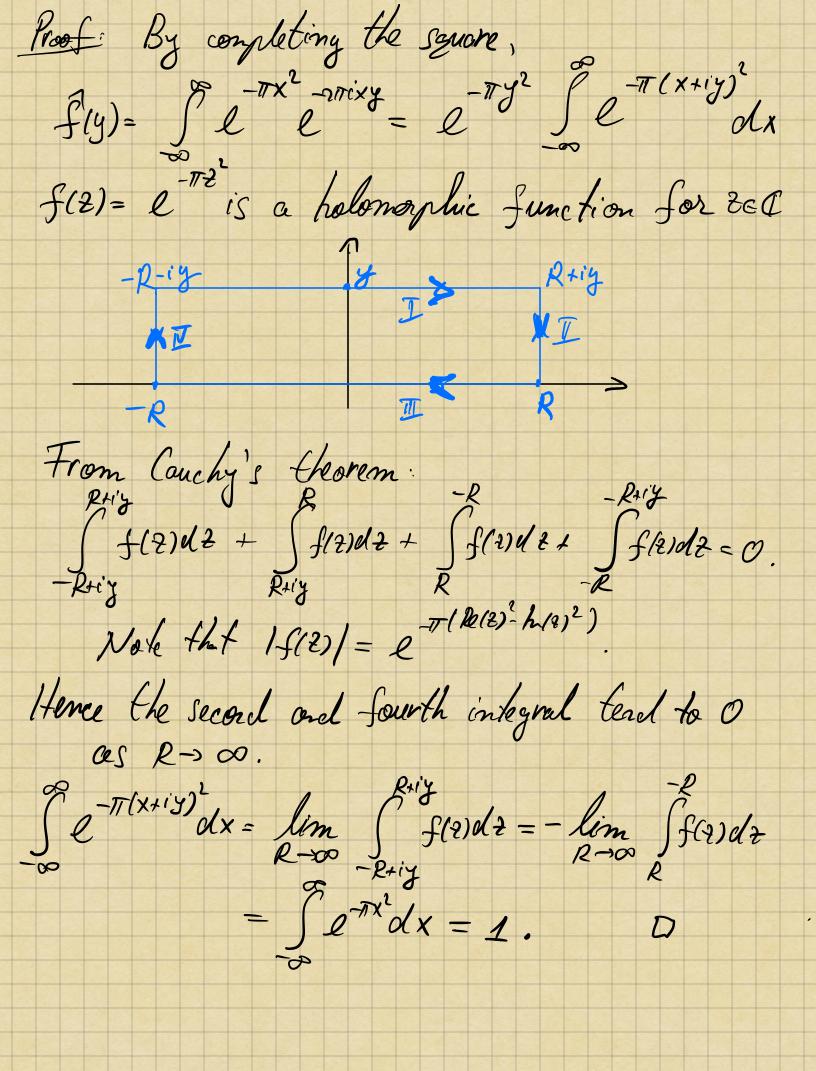
$$\sum_{n\geq 2} e^{-\pi x}$$

$$\text{There fore } \theta(x) = 1 + O(e^{-\pi x}), \text{ for } x \geq 1.$$

$$\text{Hence } \omega(x) = \frac{\Theta(x) - 1}{2} \cdot c \cdot e^{-\pi x^2}, \text{ for } x \geq 1.$$

$$\text{Lemms: let } f(x) = e^{-\pi x^2} \cdot S(e).$$

$$\text{Then } f(y) = e^{-\pi y^2} = S(y).$$



Theorem 1 Functional equation for O(x).

For all x > 0, we have $O(x) = \frac{1}{\sqrt{x}} O(\frac{1}{x})$. Proof: We've just seen $f(x) = e^{-iix^2} \in S(R)$ and f(x) = f(x). Therefore, for e > 0, let $f_c(x) = e^{-iicx^2} = f(\sqrt{c}x) \in S(R)$ From Poisson summa lion, une see $\Theta(x) = \sum_{n \in \mathbb{Z}} e^{-\pi n \cdot x} = \sum_{n \in \mathbb{Z}} f_{x}(n) = \sum_{n \in \mathbb{Z}} f_{x}(n)$ $-\sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{x}} e^{-\frac{n}{2}n^2} = \frac{1}{\sqrt{x}} \Theta\left(\frac{1}{x}\right). D$ Proof of mein theorem: Denote $w(x) = \sum_{n\geq 2} \ell^{-\pi n^2 x} = \frac{\Theta(x) - L}{2}$ Then we have $w(\frac{1}{x}) = Jx w(x) + \frac{Jx - 1}{2}$. I from functional equation of O(x). Heree, for Re(s): 1, we have

 $\frac{3}{3}(s) = \frac{17}{7}(\frac{1}{2})\frac{3}{5}(s) = M(w(x))(\frac{s}{2})$ $= \int w(x)x^{5/2}dx$ $=\int_{1}^{\infty} w(x) x^{s/2} dx + \int_{1}^{\infty} w(x) x^{-\frac{s}{2}} dx$ $= \int_{2}^{\infty} w(x) x^{3/2} dx + \int_{2}^{\infty} (\sqrt{x} w(x) + \sqrt{x} - L) x^{-\frac{S}{2}} dx$ $= -\frac{1}{S} + \frac{1}{S-1} + \int_{2}^{\infty} w(x) \left(x^{\frac{S}{2}} + x^{\frac{2S}{2}} \right) \frac{dx}{x}$ We note that the integral is absolutely and uniformly convergent for all set, I since we'x) is hence it defines a holomorphic function. In @ xl can interchange s <> 1-s, so the functional equation follows. The only roles of 3(s) are at o and 1, and they are simple. There are no zeros of ZCs) in Nels) > 1 (Since Mcs) has no zeros and Les) has no zeros in

Therefore by functional equation, $\Xi(s)$ has no zeros in lecs) 20.

Corollary (Zeros and poles of g(s))
2(s) is a meromorphic function with

- · A simple pole at S=L and no other pules.
- other zeros in Re(s) 20.
 - · Non-trivial' zeros of with Relpe [0, 13.
 - · No zeros with Ress > 1.

Proof: We have that g(s)= \(\frac{\pi^{S/2}}{\pi^{\left(\frac{2}{5}\right)}} \) \(\left(\frac{1}{2} - \sigma^{\left(\frac{2}{5}\right)} \) \(\left(\frac{1}{2} - \sigma^{\left(\frac{1}{2} - \sigma^{\l

IT and IT have no poles or zeros in complex plane $\Gamma(\frac{1}{2})$ has simple poles at S=0,-2,-4,... and no zeros.

Conclusion follows.

The location of the zeros of a complex variable gives us a let of information. We'll see later some imporbant consequences for gis) and the distribution of promes. We begin by reviewing some facts from complex analysis. lemma (Jensen's inequality)
(Site of analytic function controls
density of zeros) Let f(2) can analytic function on the disk 1216R. If f(0) \$0, the number of 2000s of f in the disk 1212 R/2 is bounded by 2 max log/f(2)/. Proof: Let 2,... 2 clerate the zeros of f in the disk 121 CR12. Note that if 121=R, then 12-21-12-21-12-21-12-21-12-221. Let $h(t) = f(t) \prod_{j=1}^{\infty} \left(\frac{R^2 + t \overline{z_j}}{R(t^2 - t \overline{z_j})} \right)$ Then h(2) analytic on 1214R and 1h(2)1=1f(2)1 if 121=R

By maximum modules principle, max |f(z) |= mex |h(z) | = |h(o) |= |f(o) | The R | 2/5/2/5 There fore $K \subseteq \frac{1}{\log_2} \max_{124=R} \frac{\log_2 \left| \frac{f(2)}{f(0)} \right|}{124=R}$ We denote N(T) the number of non-trivial zeros of 2(s) with 1/m(8)/ET. Lemma (Zevos of SCS) are not too clarse) For T = 2, we have N(T)-N(T-1) cc leg T and NOT) LLT lgT. Proof: We know that for Mess >0, $g(s) = \frac{1}{s-1} + 1 - s \int_{ys+2}^{\infty} \frac{543}{ys+2} dy.$ This implies that for $T \ge 1$ and $|t| \ge 1$, we have $|y(\sigma + it)| \le 1t!$.

We can integrate by parts, and obtain $|y(s)| = \frac{1}{s-1} + \frac{1}{2} - \frac{1}{s}(s+1) \int \frac{1}{s} \frac{y^2}{s^2} \cdot \frac{y^3}{s^2} dy$

This is well defined for Re(S) > -1 and it implies that if $\sigma > -\frac{1}{2}$, $|t| \ge 1$, $|y| (\sigma + it) | Lc (1 + |t|)^2$.

We can iterate the process of integration by parts, and for any $N \in \mathbb{N}$, we have that if $\sigma > -N + \frac{1}{2}$, $|t| \ge 1$.

1910+it) $|2 \le N + |1| \le 1$

Suppose T=10 (conclusion follows otherwise since there are finitely many non-trivial zeros xith 1 hm S1 = 10).

Let $g(z) = g(\frac{3}{2} + 2 + iT)$. Then g(z) conalytic in $12 \le 4$ and it

Satisfies $1g(z) | 2 = T^4$ in this disk.

Also $1g(0)| = |g(\frac{3}{2} + iT)| \neq 0$. 13/2 and $1g(0)| = |g(\frac{3}{2} + iT)| = 0$. $-|g(0)| = |g(\frac{3}{2} + iT)| = |g(0)| = |g(\frac{3}{2} + iT)| = |g(\frac{3}{2})|$.

From Jensen's inequality, g(z) con lave O(leg T) zeros with 121 = 2. This implies g(s) has at most O(lg T) zeros with T=hs = T+1. 1 Since & 0 = Res) = 1, T = h B) = T + 13 C & S: 15-3-17/= 23)